Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 32(8): 753-768, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596089

RESUMO

The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal-epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell-cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.


Assuntos
Adesão Celular/fisiologia , Desmocolinas/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Desmocolinas/genética , Desmocolinas/fisiologia , Desmogleína 2/metabolismo , Caderinas de Desmossomos/metabolismo , Caderinas de Desmossomos/fisiologia , Desmossomos/metabolismo , Humanos , Junções Intercelulares/metabolismo , Mucosa Intestinal , Masculino , Camundongos , Camundongos Knockout
2.
Mol Biol Cell ; 31(6): 407-418, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31967937

RESUMO

The intestinal mucosa is lined by a single layer of epithelial cells that forms a tight barrier, separating luminal antigens and microbes from underlying tissue compartments. Mucosal damage results in a compromised epithelial barrier that can lead to excessive immune responses as observed in inflammatory bowel disease. Efficient wound repair is critical to reestablish the mucosal barrier and homeostasis. Intestinal epithelial cells (IEC) exclusively express the desmosomal cadherins, Desmoglein-2 and Desmocollin-2 (Dsc2) that contribute to mucosal homeostasis by strengthening intercellular adhesion between cells. Despite this important property, specific contributions of desmosomal cadherins to intestinal mucosal repair after injury remain poorly investigated in vivo. Here we show that mice with inducible conditional knockdown (KD) of Dsc2 in IEC (Villin-CreERT2; Dsc2 fl/fl) exhibited impaired mucosal repair after biopsy-induced colonic wounding and recovery from dextran sulfate sodium-induced colitis. In vitro analyses using human intestinal cell lines after KD of Dsc2 revealed delayed epithelial cell migration and repair after scratch-wound healing assay that was associated with reduced cell-matrix traction forces, decreased levels of integrin ß1 and ß4, and altered activity of the small GTPase Rap1. Taken together, these results demonstrate that epithelial Dsc2 is a key contributor to intestinal mucosal wound healing in vivo.


Assuntos
Movimento Celular , Desmocolinas/metabolismo , Integrinas/metabolismo , Mucosa Intestinal/patologia , Cicatrização , Animais , Adesão Celular , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Enterócitos/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Deleção de Genes , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Proteínas rap1 de Ligação ao GTP/metabolismo
3.
J Physiol ; 596(17): 3883-3898, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29968384

RESUMO

The single pass, transmembrane proteins of the cadherin family have been appreciated as important proteins that regulate intercellular adhesion. In addition to this critical function, cadherins contribute to important signalling events that control cellular homeostasis. Many examples exist of classical, desmosomal and atypical cadherins participating in the regulation of signalling events that control homeostatic functions in cells. Much of the work on cadherin mediated signalling focuses on classical cadherins or on specific disease states such as pemphigus vulgaris. Cadherin mediated signalling has been shown to play critical roles during development, in proliferation, apoptosis, disease pathobiology and beyond. It is becoming increasingly clear that cadherins operate through a range of molecular mechanisms. The diversity of pathways and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of the roles that these versatile proteins play in signalling and cellular function.


Assuntos
Apoptose , Caderinas/metabolismo , Adesão Celular , Diferenciação Celular , Neoplasias/fisiopatologia , Transdução de Sinais , Animais , Humanos , Neoplasias/metabolismo
4.
Sci Rep ; 8(1): 4961, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563538

RESUMO

Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP-/- mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, ß-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.


Assuntos
Aterosclerose/patologia , Proteína Morfogenética Óssea 2/metabolismo , Placa Aterosclerótica/patologia , Proteínas/metabolismo , Calcificação Vascular/patologia , Animais , Aorta/citologia , Aorta/patologia , Biomarcadores/metabolismo , Células Cultivadas , Condrogênese/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas da Matriz Extracelular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosfatos/efeitos adversos , Cultura Primária de Células , Ligação Proteica , Proteínas/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Calcificação Vascular/induzido quimicamente
5.
Diabetologia ; 61(2): 482-495, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29085990

RESUMO

AIMS/HYPOTHESIS: Microvascular complications in the heart and kidney are strongly associated with an overall rise in inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory molecule that limits and resolves inflammation. In this study, we have used a bedside to bench approach to investigate: (1) ANXA1 levels in individuals with type 1 diabetes; (2) the role of endogenous ANXA1 in nephropathy and cardiomyopathy in experimental type 1 diabetes; and (3) whether treatment with human recombinant ANXA1 attenuates nephropathy and cardiomyopathy in a murine model of type 1 diabetes. METHODS: ANXA1 was measured in plasma from individuals with type 1 diabetes with or without nephropathy and healthy donors. Experimental type 1 diabetes was induced in mice by injection of streptozotocin (STZ; 45 mg/kg i.v. per day for 5 consecutive days) in C57BL/6 or Anxa1 -/- mice. Diabetic mice were treated with human recombinant (hr)ANXA1 (1 µg, 100 µl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.) or vehicle (100 µl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.). RESULTS: Plasma levels of ANXA1 were elevated in individuals with type 1 diabetes with/without nephropathy compared with healthy individuals (66.0 ± 4.2/64.0 ± 4 ng/ml vs 35.9 ± 2.3 ng/ml; p < 0.05). Compared with diabetic wild-type (WT) mice, diabetic Anxa1 -/- mice exhibited a worse diabetic phenotype and developed more severe cardiac (ejection fraction; 76.1 ± 1.6% vs 49.9 ± 0.9%) and renal dysfunction (proteinuria; 89.3 ± 5.0 µg/mg vs 113.3 ± 5.5 µg/mg). Mechanistically, compared with non-diabetic WT mice, the degree of the phosphorylation of mitogen-activated protein kinases (MAPKs) p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) was significantly higher in non-diabetic Anxa1 -/- mice in both the heart and kidney, and was further enhanced after STZ-induced type 1 diabetes. Prophylactic treatment with hrANXA1 (weeks 1-13) attenuated both cardiac (ejection fraction; 54.0 ± 1.6% vs 72.4 ± 1.0%) and renal (proteinuria; 89.3 ± 5.0 µg/mg vs 53.1 ± 3.4 µg/mg) dysfunction associated with STZ-induced diabetes, while therapeutic administration of hrANXA1 (weeks 8-13), after significant cardiac and renal dysfunction had already developed, halted the further functional decline in cardiac and renal function seen in diabetic mice administered vehicle. In addition, administration of hrANXA1 attenuated the increase in phosphorylation of p38, JNK and ERK, and restored phosphorylation of Akt in diabetic mice. CONCLUSIONS/INTERPRETATION: Overall, these results demonstrate that ANXA1 plasma levels are elevated in individuals with type 1 diabetes independent of a significant impairment in renal function. Furthermore, in mouse models with STZ-induced type 1 diabetes, ANXA1 protects against cardiac and renal dysfunction by returning MAPK signalling to baseline and activating pro-survival pathways (Akt). We propose ANXA1 to be a potential therapeutic option for the control of comorbidities in type 1 diabetes.


Assuntos
Anexina A1/sangue , Diabetes Mellitus Tipo 1/sangue , Animais , Anexina A1/genética , Anexina A1/metabolismo , Western Blotting , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Immunol ; 195(3): 1139-51, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101324

RESUMO

Blood-derived monocytes remove apoptotic cells and terminate inflammation in settings as diverse as atherosclerosis and Alzheimer's disease. They express high levels of the proresolving receptor ALX/FPR2, which is activated by the protein annexin A1 (ANXA1), found in high abundance in inflammatory exudates. Using primary human blood monocytes from healthy donors, we identified ANXA1 as a potent CD14(+)CD16(-) monocyte chemoattractant, acting via ALX/FPR2. Downstream signaling pathway analysis revealed the p38 MAPK-mediated activation of a calcium independent phospholipase A2 with resultant synthesis of lysophosphatidic acid (LPA) driving chemotaxis through LPA receptor 2 and actin cytoskeletal mobilization. In vivo experiments confirmed ANXA1 as an independent phospholipase A2-dependent monocyte recruiter; congruently, monocyte recruitment was significantly impaired during ongoing zymosan-induced inflammation in AnxA1(-/-) or alx/fpr2/3(-/-) mice. Using a dorsal air-pouch model, passive transfer of apoptotic neutrophils between AnxA1(-/-) and wild-type mice identified effete neutrophils as the primary source of soluble ANXA1 in inflammatory resolution. Together, these data elucidate a novel proresolving network centered on ANXA1 and LPA generation and identify previously unappreciated determinants of ANXA1 and ALX/FPR2 signaling in monocytes.


Assuntos
Anexina A1/imunologia , Apoptose/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Receptores de Ácidos Lisofosfatídicos/imunologia , Citoesqueleto de Actina/metabolismo , Animais , Anexina A1/genética , Células Cultivadas , Ativação Enzimática/imunologia , Humanos , Inflamação/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lisofosfolipídeos/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/transplante , Fosfolipases A2 Independentes de Cálcio/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de Formil Peptídeo/biossíntese , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de IgG/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Zimosan , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
PLoS One ; 10(6): e0130484, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090792

RESUMO

OBJECTIVE: To investigate therapeutic effects of annexin A1 (anxA1) on atherogenesis in LDLR-/- mice. METHODS: Human recombinant annexin A1 (hr-anxA1) was produced by a prokaryotic expression system, purified and analysed on phosphatidylserine (PS) binding and formyl peptide receptor (FPR) activation. Biodistribution of 99mTechnetium-hr-anxA1 was determined in C57Bl/6J mice. 12 Weeks old LDLR-/- mice were fed a Western Type Diet (WTD) during 6 weeks (Group I) or 12 weeks (Group P). Mice received hr-anxA1 (1 mg/kg) or vehicle by intraperitoneal injection 3 times per week for a period of 6 weeks starting at start of WTD (Group I) or 6 weeks after start of WTD (Group P). Total aortic plaque burden and phenotype were analyzed using immunohistochemistry. RESULTS: Hr-anxA1 bound PS in Ca2+-dependent manner and activated FPR2/ALX. It inhibited rolling and adherence of neutrophils but not monocytes on activated endothelial cells. Half lives of circulating 99mTc-hr-anxA1 were <10 minutes and approximately 6 hours for intravenously (IV) and intraperitoneally (IP) administered hr-anxA1, respectively. Pharmacological treatment with hr-anxA1 had no significant effect on initiation of plaque formation (-33%; P = 0.21)(Group I) but significantly attenuated progression of existing plaques of aortic arch and subclavian artery (plaque size -50%, P = 0.005; necrotic core size -76% P = 0.015, hr-anxA1 vs vehicle) (Group P). CONCLUSION: Hr-anxA1 may offer pharmacological means to treat chronic atherogenesis by reducing FPR-2 dependent neutrophil rolling and adhesion to activated endothelial cells and by reducing total plaque inflammation.


Assuntos
Anexina A1/farmacologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de LDL/deficiência , Proteínas Recombinantes , Animais , Anexina A1/administração & dosagem , Células Sanguíneas/metabolismo , Células da Medula Óssea/metabolismo , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Vias de Administração de Medicamentos , Humanos , Imunofenotipagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/etiologia , Receptores de LDL/genética
8.
J Clin Invest ; 125(3): 1215-27, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25664854

RESUMO

Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.


Assuntos
Anexina A1/fisiologia , Exossomos/fisiologia , Mucosa Intestinal/fisiopatologia , Animais , Anexina A1/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Linhagem Celular , Colite/sangue , Colite/fisiopatologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Camundongos Knockout , Nanopartículas , Peptídeos/administração & dosagem , Cicatrização
9.
J Cell Mol Med ; 18(10): 2117-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25214012

RESUMO

Annexin A5 (AnxA5) exerts anti-inflammatory, anticoagulant and anti-apoptotic effects through binding cell surface expressed phosphatidylserine. The actions of AnxA5 on atherosclerosis are incompletely understood. We investigated effects of exogenous AnxA5 on plaque morphology and phenotype of advanced atherosclerotic lesions in apoE(-/-) mice. Advanced atherosclerotic lesions were induced in 12 weeks old Western type diet fed apoE(-/-) mice using a collar placement around the carotid artery. After 5 weeks mice were injected either with AnxA5 (n = 8) or vehicle for another 4 weeks. AnxA5 reduced plaque macrophage content both in the intima (59% reduction, P < 0.05) and media (73% reduction, P < 0.01) of advanced atherosclerotic lesions of the carotid artery. These findings corroborated with advanced lesions of the aortic arch, where a 67% reduction in plaque macrophage content was observed with AnxA5 compared to controls (P < 0.01). AnxA5 did not change lesion extension, plaque apoptosis, collagen content, smooth muscle cell content or acellular plaque composition after 4 weeks of treatment as determined by immunohistochemistry in advanced carotid lesions. In vitro, AnxA5 exhibited anti-inflammatory effects in macrophages and a flow chamber based assay demonstrated that AnxA5 significantly inhibited capture, rolling, adhesion as well as transmigration of peripheral blood mononuclear cells on a TNF-α-activated endothelial cell layer. In conclusion, short-term treatment with AnxA5 reduces plaque inflammation of advanced lesions in apoE(-/-) mice likely through interfering with recruitment and activation of monocytes to the inflamed lesion site. Suppressing chronic inflammation by targeting exposed phosphatidylserine may become a viable strategy to treat patients suffering from advanced atherosclerosis.


Assuntos
Anexina A5/metabolismo , Apolipoproteínas E/fisiologia , Modelos Animais de Doenças , Inflamação/prevenção & controle , Placa Aterosclerótica/prevenção & controle , Animais , Anexina A5/genética , Apoptose , Western Blotting , Adesão Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Técnicas Imunoenzimáticas , Inflamação/genética , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
10.
PLoS One ; 9(5): e96749, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801051

RESUMO

OBJECTIVE: Annexin A5 is a phosphatidylserine binding protein that binds dying cells in vivo. Annexin A5 is a potential molecular imaging agent to determine efficacy of anti-cancer therapy in patients. Its rapid clearance from circulation limits tumor uptake and, hence, its sensitivity. The aim of this study is to determine if non-invasive imaging of cell death in tumors will benefit from increasing circulation time of annexin A5 by increasing its size. PROCEDURES: Annexin A5 size was increased by complexation of biotinylated annexin A5 with Alexa-Fluor680-labeled streptavidin. The non-binding variant of annexin A5, M1234, was used as negative control. The HT29 colon carcinoma xenograft model in NMRI nude mice was used to measure tumor uptake in vivo. Tumor uptake of fluorescent annexin A5-variants was measured using non-invasive optical imaging. RESULTS: The annexin A5-streptavidin complex (4 ∶ 1, moles:moles, Mw ∼ 200 kDa) binds phosphatidylserine-expressing membranes with a Hill-coefficient of 5.7 ± 0.5 for Ca2+-binding and an EC50 of 0.9 ± 0.1 mM Ca2+ (EC50 is the Ca2+ concentration required for half maximal binding)(annexin A5: Hill-coefficient 3.9 ± 0.2, EC50 1.5 ± 0.2 mM Ca2+). Circulation half-life of annexin A5-streptavidin is ± 21 minutes (circulation half-life of annexin A5 is ± 4 min.). Tumor uptake of annexin A5-streptavidin was higher and persisted longer than annexin A5-uptake but depended less on phosphatidylserine binding. CONCLUSION: Increasing annexin A5 size prolongs circulation times and increases tumor uptake, but decreases contribution of PS-targeting to tumor uptake and abolishes power to report efficacy of therapy.


Assuntos
Anexina A5/metabolismo , Apoptose , Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Estreptavidina/química , Animais , Anexina A5/química , Anexina A5/genética , Biotina/química , Biotina/metabolismo , Células HT29 , Meia-Vida , Humanos , Hidrazinas/química , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Microscopia Confocal , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Radiografia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Estreptavidina/metabolismo , Distribuição Tecidual , Transplante Heterólogo
11.
Hepatology ; 60(2): 531-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24668763

RESUMO

UNLABELLED: Annexin A1 (AnxA1) is an effector of the resolution of inflammation and is highly effective in terminating acute inflammatory responses. However, its role in chronic settings is less investigated. Because changes in AnxA1 expression within adipose tissue characterize obesity in mice and humans, we queried a possible role for AnxA1 in the pathogenesis of nonalcoholic steatohepatitis (NASH), a disease commonly associated with obesity. NASH was induced in wild-type (WT) and AnxA1 knockout (AnxA1 KO) C57BL/6 mice by feeding a methionine-choline deficient (MCD) diet up to 8 weeks. In MCD-fed WT mice, hepatic AnxA1 increased in parallel with progression of liver injury. This mediator was also detected in liver biopsies from patients with NASH and its degree of expression inversely correlated with the extent of fibrosis. In both humans and rodents, AnxA1 production was selectively localized in liver macrophages. NASH in AnxA1 KO mice was characterized by enhanced lobular inflammation resulting from increased macrophage recruitment and exacerbation of the M1 phenotype. Consistently, in vitro addition of recombinant AnxA1 to macrophages isolated from NASH livers down-modulated M1 polarization through stimulation of interleukin-10 production. Furthermore, the degree of hepatic fibrosis was enhanced in MCD-fed AnxA1 KO mice, an effect associated with augmented liver production of the profibrotic lectin, galectin-3. Accordingly, AnxA1 addition to isolated hepatic macrophages reduced galectin-3 expression. CONCLUSIONS: Macrophage-derived AnxA1 plays a functional role in modulating hepatic inflammation and fibrogenesis during NASH progression, suggesting the possible use of AnxA1 analogs for therapeutic control of this disease.


Assuntos
Anexina A1/imunologia , Fígado Gorduroso/imunologia , Hepatite/imunologia , Macrófagos/imunologia , Animais , Anexina A1/genética , Deficiência de Colina/genética , Deficiência de Colina/imunologia , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/genética , Hepatite/genética , Humanos , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Obesidade/genética , Obesidade/imunologia
12.
J Clin Invest ; 123(1): 443-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23241962

RESUMO

N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.


Assuntos
Anexina A1/metabolismo , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais , Cicatrização , Animais , Anexina A1/genética , Linhagem Celular , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Feminino , Regulação da Expressão Gênica/genética , Humanos , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidases/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/genética , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Mol Imaging Biol ; 14(5): 523-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22983911

RESUMO

Cardiovascular disease (CVD) is still the leading cause of death in the Western World. Adverse outcomes of CVD include stroke, myocardial infarction, and heart failure. Atherosclerosis is considered to be the major cause of CVD and is estimated to cause half of all deaths in developed countries. Atherosclerotic lesions of the vessel wall may obstruct blood flow mechanically through stenosis, but rupture of atherosclerotic plaques causing formation of occlusive thrombi is far more prevalent. Unfortunately, conventional diagnostic tools fail to assess whether a plaque is vulnerable to rupture. Research over the past decade identified the biological processes that are implicated in the course towards plaque rupture, like cell death and inflammation. Knowledge about plaque biology propelled the development of imaging techniques that target biologic processes in order to predict the vulnerable plaque. This paper discusses novel and existing molecular imaging targets and addresses advantages and disadvantages of these targets and respective imaging techniques in respect of clinical application and socio-economic impact.


Assuntos
Imagem Molecular/métodos , Placa Aterosclerótica/diagnóstico , Pesquisa Translacional Biomédica , Morte Celular , Humanos , Inflamação/diagnóstico , Inflamação/patologia , Imagem Molecular/economia , Placa Aterosclerótica/economia , Placa Aterosclerótica/patologia , Fatores Socioeconômicos , Pesquisa Translacional Biomédica/economia
14.
Nucl Med Biol ; 37(8): 965-75, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21055628

RESUMO

INTRODUCTION: Apoptosis is one of the mechanisms behind successful chemotherapy and radiation treatment. Radiolabeled annexin A5 has been demonstrated to be a successful tool in the detection of apoptosis following chemotherapy in vivo. METHODS: His-tagged annexin A5 was labeled with [(99m)Tc]-tricarbonyl and evaluated as apoptosis imaging radiotracer in vitro and in vivo. The binding of the radiotracer was evaluated in Colo205 cells stimulated with 5-FU (1 mM) for 4 and 24 h, and confirmed by flow cytometry. Biodistribution and dosimetric studies were performed in healthy nude mice (n=5) via planar scintigraphy. [(99m)Tc]-(CO)(3) His-annexin A5 was also evaluated for in vivo imaging of spontaneous apoptosis in Colo205-bearing mice (n=12). RESULTS: The labeling procedure yielded a compound with 95-99% radiochemical purity and good in vitro stability. In vitro binding experiments indicated that the radiotracer retained its PS-binding activity. [(99m)Tc]-(CO)(3) His-annexin A5 rapidly cleared from the blood and predominantly accumulated in the kidneys. Absorbed dose (per organ) was found to be 116 ± 64 µGy/MBq for the kidneys and 10.38 ± 0.50 µGy/MBq for the liver. The effective dose was 7.00 ± 0.28 µSv/MBq. Spontaneous apoptosis in Colo205-bearing mice was visualised by [(99m)Tc]-(CO)(3) His-annexin A5 SPECT and correlated well with caspase-3 immunostaining (R=0.867, P<.01). CONCLUSION: [(99m)Tc]-(CO)(3) His-annexin A5 may be a useful novel radioligand for the in vivo detection of cell death associated with PS expression. A simple, noninvasive way of detecting apoptosis in vivo could have many applications including a better understanding of the extent and timing of apoptosis in response to cancer therapies and assessment of early tumor response.


Assuntos
Anexina A5/química , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Histidina/química , Compostos de Organotecnécio , Fosfatidilserinas/metabolismo , Animais , Anexina A5/metabolismo , Anexina A5/farmacocinética , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Camundongos , Radiometria , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...